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● Text-to-image generation models are able to produce high-quality images from 
simple prompts

● To understand and regulate AI-generated images, it is crucial to detect whether 
the content is real or fake and also to identify the source model

● In real-world scenario, images are often with different perturbations, such as 
JPEG compression, noise, blurring, and so on
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Dataset

5

● Defactify dataset
○ 4 splits
○ real image and 5 generative models
○ final testing: consist of unknown perturbation

R. Roy, N. Imanpour, A. Aziz, S. Bajpai, G. Singh, S. Biswas, K. Wanaskar, P. Patwa, S. Ghosh, S. Dixit, N. R. Pal, V. Rawte, R. Garimella, A. Das, A. 
Sheth, V. Sharma, A. N. Reganti, V. Jain, A. Chadha, Overview of image counter turing test: Ai generated image detection, in: proceedings of DeFactify 4: 
Fourth workshop on Multimodal Fact-Checking and Hate Speech Detection, CEUR, 2025.
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● In the real-world scenario, images are often with different perturbations
○ Noise
○ JPEG compression
○ Blurring
○ Brightness transformation
○ …
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● We compare two main methods
○ CLIP
○ CNN-based

● We also add different kinds of perturbations for training
○ JPEG compression
○ Gaussian blurring
○ Gaussian noise
○ Brightness transformation



Solution - CLIP
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● Backbone: openai/clip-vit-base-patch16
● We trained a SVM classifier based on the pretrained image features
● Perform the grid search to find best parameters set



Solution - CNN
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● Backbone: EfficientNet-B0
● We construct more image features, such as VAE reconstruction error and FFT
● Train a CNN classifier from the (512, 512, 5) features
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Experiment
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Result
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● Different models with different noises



Comparison to Baseline
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● We also compare our methods with some SOTA methods
○ AEROBLADE (CVPR 2024)
○ OCC-CLIP (ECCV 2024)

● Our methods achieve competitive results on Task A and outperform all baseline 
methods on Task B. (This experiment is done on validation set)

● For final testing set, we get 0.8329 on Task A and 0.491 on Task B



Ablation Study
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● The importance of data augmentation
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● Both EfficientNet-B0 and CLIP-ViT models perform well in task A and task B, with 

CLIP-ViT showing greater robustness against real-world image degradations.

● Our methods achieve competitive or superior results compared to baselines like 

AEROBLADE and OCC-CLIP, especially in source model identification.

● Data augmentation with perturbations (e.g., Gaussian noise, JPEG compression) 

significantly improves model generalization and robustness.



18

Thanks

18


