

Team NYCU at Defactify4: Robust Detection and Source Identification of AI-Generated Images Using CNN and CLIP-Based Models

Tsan-Tsung Yang, Kuan-Ting Chen,

I-Wei Chen, Shang-Hsuan Chiang and Wen-Chih Peng

National Yang Ming Chaio Tung University

Outline

- Introduction
- Problem
- Solution
- Experiment
- Conclusion

Introduction

Introduction

- Text-to-image generation models are able to produce high-quality images from simple prompts
- To understand and regulate AI-generated images, it is crucial to detect whether the content is real or fake and also to identify the source model
- In real-world scenario, images are often with different perturbations, such as JPEG compression, noise, blurring, and so on

Dataset

 Defactify data 	aset				
\circ 4 solits		Split Name	Number of Samples		
 real imag final testi 	e and 5 gene	Training Validation	42000 9000		
		Final Testing	45000		
Real image from MS-COCO dataset	Stable Diffusion 2.1	Stable Diffusion xl	Stable Diffusion 3	DALL·E	MidJourney
		AT THE			- AL

R. Roy, N. Imanpour, A. Aziz, S. Bajpai, G. Singh, S. Biswas, K. Wanaskar, P. Patwa, S. Ghosh, S. Dixit, N. R. Pal, V. Rawte, R. Garimella, A. Das, A. Sheth, V. Sharma, A. N. Reganti, V. Jain, A. Chadha, Overview of image counter turing test: Ai generated image detection, in: proceedings of DeFactify 4: Fourth workshop on Multimodal Fact-Checking and Hate Speech Detection, CEUR, 2025.

Problem

- In the real-world scenario, images are often with different perturbations
 - Noise
 - JPEG compression
 - Blurring
 - Brightness transformation
 - 0 ...

Solution

- We compare two main methods
 - CLIP
 - CNN-based
- We also add different kinds of perturbations for training
 - JPEG compression
 - Gaussian blurring
 - Gaussian noise
 - Brightness transformation

Solution - CLIP

- Backbone: openai/clip-vit-base-patch16
- We trained a SVM classifier based on the pretrained image features
- Perform the grid search to find best parameters set

Solution - CNN

- Backbone: EfficientNet-B0
- We construct more image features, such as VAE reconstruction error and FFT
- Train a CNN classifier from the (512, 512, 5) features

Experiment

• Different models with different noises

Figure 3: The generalization of CLIP-ViT and EfficientNet on different perturbations. The red square line indicates the CLIP-ViT and the blue circle one indicates EfficientNet. The result shows that CLIP-ViT's performance is better while EfficientNet's performance drops dramatically.

Comparison to Baseline

- We also compare our methods with some SOTA methods
 - AEROBLADE (CVPR 2024)
 - OCC-CLIP (ECCV 2024)
- Our methods achieve competitive results on Task A and outperform all baseline methods on Task B. (This experiment is done on validation set)

Adatha d	Task A		Task B	
Method	Acc.	F1	Acc.	F1
AEROBLADE	0.8149	0.6986	-	-
OCC-CLIP	0.9934	0.9881	0.8693	0.8721
Ours: EfficientNet-B0	<u>0.9849</u>	0.9833	0.9951	0.9951
Ours: CLIP-ViT	0.9421	0.9421	<u>0.9377</u>	<u>0.9317</u>

• For final testing set, we get **0.8329** on Task A and **0.491** on Task B

Ablation Study

• The importance of data augmentation

Figure 4: The importance of data augmentation. The red square line indicates training with data augmentation and the blue circle one indicates training without data augmentation.

Conclusion

Conclusion

- Both EfficientNet-B0 and CLIP-ViT models perform well in task A and task B, with CLIP-ViT showing greater robustness against real-world image degradations.
- Our methods achieve competitive or superior results compared to baselines like AEROBLADE and OCC-CLIP, especially in source model identification.
- Data augmentation with perturbations (e.g., Gaussian noise, JPEG compression) significantly improves model generalization and robustness.

Thanks